Growing mushroom houses on the moon? NASA’s fungus-filled plan
Going to space – let alone staying there – is costly and dangerous. It takes about a million dollars to get half a kilogram (1 pound) of material to the moon, and even more to Mars. And along the way, any human spacefarers must survive radiation, extreme pressure and temperature variations as well as random micrometeorites whizzing through the void like bullets.
According to a programme gaining momentum at NASA, the solution involves growing mushroom structures on the moon – then beyond.
The magic of mycotecture
The endeavour to leverage such mycotecture – called the Mycotecture Off Planet Structures at Destination project – has recently been awarded a Phase III contract with NASA, meaning it will receive the funding necessary to continue. In other words, mushrooms are go for blastoff.
While the implications of this mushroom technology are now literally astronomical, the creation of the material itself is surprisingly straightforward. Mycotecture – the use of fungal-based materials for constructive purposes – has been a growing trend in recent years, and has been used in everything from art to building to “biocycling” waste.
Maurer’s firm has already been applying it to confront challenges here on Earth. In Namibia, for example, redhouse runs a programme that uses mycomaterial to build housing for climate refugees while simultaneously growing edible mushrooms to address food scarcity issues.
When NASA astrobiologist and project leader Lynn Rothschild became aware of these and other myco-efforts, she recognised their potential applications for space exploration. Since then, the mycotechnology has gained the backing of prominent NASA figures such as geologist Jim Head, who once trained astronauts for the Apollo lunar exploration programme, and Apollo 15 commander David Scott, one of just 12 people who have ever walked on the moon.
On Earth, Maurer’s team makes myco “bricks” by simply feeding organic matter from plants or construction waste to various fungal species. The resultant material is then heated and compacted into blocks that are more resilient than concrete and exponentially better for the environment.
This process gets somewhat turned on its head, however, when it comes to space.
“The strongness doesn’t really matter on the moon or Mars because gravity is much less and the building forces are going to be outwards because you’re in a pressurised vessel,” explains Maurer. “Instead of gravity pushing down on your building, you have air pushing out, so you don’t need a good material for compressive strength, but for tensile strength that can hold that pressure.” In other words, in space, buildings don’t fall down, but out.
The plan is to start with an inflatable mould in which mycomaterial is grown using a combination of Earth-sourced fungal spores and algae, which will feed off the water and regolith already on the moon.