Is Intelligent Life Possible in Other Cosmic Planets?

Statisticians say the evolution of intelligent life is ‘exceptionally rare’, and that human-like civilisations are extremely unlikely to exist on other planets. 

In a new paper, Oxford researchers theorise that, for life to evolve in the same way elsewhere in the universe, it would take longer than the whole of Earth’s projected lifespan.

Evolution on Earth from the Big Bang up until the current day has involved a series of what they call ‘evolutionary transitions’ that were helped by chance.

These include the emergence of primitive life from non-living matter (known as abiogenesis) and eukaryotic life (with cells that have a nucleus enclosed), the evolution of sexual reproduction, multicellularity, and intelligence itself.

If intelligent life does exist on other planets, it would need to have gone through a series of comparable evolutionary transitions.

The research draws on the Fermi paradox, which is the apparent contradiction between the lack of evidence for extra-terrestrial civilizations and various high estimates for their probability.

‘It took approximately 4.5 billion years for a series of evolutionary transitions resulting in intelligent life to unfold on Earth,’ the experts, from Oxford University’s Future of Humanity Institute, say in their paper.

‘In another billion years, the increasing luminosity of the Sun will make Earth uninhabitable for complex life.

‘Together with the dispersed timing of key evolutionary transitions and plausible priors, one can conclude that the expected transition times likely exceed the lifetime of Earth, perhaps by many orders of magnitude.

‘In turn, this suggests that intelligent life is likely to be exceptionally rare.’

The researchers used a special statistical technique called a ‘Bayesian analysis’ to determine the probability of events in Earth’s history – a ‘chain of multiple evolutionary transitions’ – happening elsewhere.

‘Our methods were basically statistics,’ Dr Anders Sandberg at the Future of Humanity Institute told MailOnline.

‘We made use of the assumption that what happened on Earth is typical for what happens on other planets – not the exact times, but that there are some tricky steps life needs to get through in sequence to produce intelligent observers.’

For example, eukaryotes – organisms with a nucleus – needed more than a billion years ago to emerge from their nucleus-less prokaryotic predecessors.

This was a far less probable event than the development of multicellular life, which is thought to have originated independently over 40 times in nature.

The fact that some transitions occurred only once in Earth’s history suggests a remarkable stroke of luck that resulted in intelligent Earthlings today.

The team quote American evolutionary biologist Stephen Jay Gould, who said that if the ‘tape of life’ were to be rerun, ‘the chance becomes vanishingly small that anything like human intelligence’ would occur.

‘What we added was a statistical approach that allows us to get estimates of just how unlikely the steps could be,’ Dr Sandberg told MailOnline.

‘We feed in data about when things happened on Earth and a guess of how many steps there were, and in return we get the most likely levels of difficulty.

‘[These] turn out to indicate that, yes, we are an unlikely planet.’

Arriving at the opposite conclusion – that life in the universe isn’t rare at all – would require evidence for much earlier transitions than the ones that occurred on Earth, or multiple instances of transitions.

The classic version of this argument stems from the work of Australian theoretical physicist Brandon Carter, who sought to explain why intelligent life emerged so late in Earth’s history.

Earth is 4.5 billion years old and in another billion years, the increasing luminosity of the Sun will likely destroy Earth’s ability to support complex life, due to increased surface temperatures.

But humans – including our human-like ape ancestors that walked on two legs – have only existed on Earth for about the last 6 million years.

Homo sapiens, meanwhile, arrived around 200,000 years ago.

‘[Carter] pointed out that there is no reason to think the tricky steps on average may take much more time than planets remain habitable,’ Dr Sandberg said.

‘There might well be entirely different kinds of life and minds but they are likely as hard (or harder) to evolve than us.’

Dr Sandberg added that the new study fits into what one could call ‘armchair astrobiology’ as it deals with probabilities.

‘Just because we got our results doesn’t mean it is a waste of time to look at the actual universe,’ he said.

‘Data will always trump ever so careful reasoning and statistics.’

Related Articles

Back to top button